Note: All statements require proofs. You can make references to standard theorems from the course; however, you need state the relevant part of the theorem in your own words, unless it is a well-known named theorem. For example, "we had a theorem in the class that said that any continuous function on a compact subset of \mathbb{R}^{n} is uniformly continuous" is a good reference, and "by the uniqueness theorem from the class, f is unique" is not a good reference.

1. Compute the following integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x
$$

2. Consider the polynomial

$$
p(z):=z^{6}+a z^{2}+1
$$

Find an $a>0$ so that $p(z)$ has exactly 4 zeros in the annulus $\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<2\right\}$.
3. Let f be an entire function with finitely many zeros, and suppose there exists constants $0<\rho<1$ and $A, B>0$ so that

$$
|f(z)| \leq A e^{B|z|^{\rho}}
$$

for all $z \in \mathbb{C}$. Show that f is a polynomial.
4. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of entire functions which is uniformly bounded on compact subsets. Suppose that there exists a polynomial $p(z)$ of degree d such that for each $z \in \mathbb{C},\left(f_{n}(z)\right)_{n \in \mathbb{N}}$ converges to to $p(z)$. Show that there exists $N \in \mathbb{N}$ so that for all $n \geq N, f_{n}(z)$ has at least d zeros (counting multiplicities).
5. Let $\Omega \subsetneq \mathbb{C}$ be a simply connected domain. Suppose that $f: \Omega \rightarrow \Omega$ is analytic and that for some $z_{0} \in \Omega$ we have $f\left(z_{0}\right)=z_{0}$ and $f^{\prime}\left(z_{0}\right)=1$. Show that $f(z)=z$.

